Roundworms' anti-aging could help researchers to stop human aging

“Decreased mitochondrial membrane potential is an attractive explanation for the complex dysfunctions of aging."
Nergis Firtina
C. elgans, a tiny, short-lived roundworm used in aging research and other studies
C. elgans, a tiny, short-lived roundworm used in aging research and other studies

National Science Foundation 

University of Washington School of Medicine researchers' experiment on C.elegans demonstrated that harnessing light energy to rejuvenate mitochondrial membranes slowed aging.

As part of their research on aging, the team is interested in learning how to modulate mitochondrial activity directly. The energy centers inside living cells are called mitochondria. Among their numerous essential roles, they are vital for cellular respiration and energy production, as per the release.

Roundworms, which have an average lifespan of just two to three weeks, are frequently used in aging studies. This means that it is usually possible to receive study results swiftly. Researchers sought to know more about how roundworm aging is affected by mitochondrial dysfunction and whether part of this decline may be stopped or reversed.

Brandon J. Berry, the study's lead author, is a postdoctoral fellow in Professor Matt Kaeberlein's laboratory at the University of Washington School of Medicine. Shahaf Peleg, a member of the Group on Epigenetics, Metabolism, and Longevity at the Institute for Farm Animal Biology in Dummerstorf, Germany, and Andrew P. Wojtovich, a researcher at the University of Rochester Medical Center in New York, are the seniors, and corresponding authors of the study.

Roundworms' anti-aging could help researchers to stop human aging
An adult hermaphrodite C. elegans worm.

Why mitochondria’s membrane?

A double membrane surrounds each mitochondrion. The interior layer has accordion-style pleats. Age-related declines in the voltage potential (the ability to transfer charged particles across the inner membrane) have been noted in earlier modeling studies by others.

Numerous essential functions of these cellular organelles, such as the synthesis of energy molecules, immunological signaling, and genetic regulation, are driven by the mitochondrial membrane potential.

“Decreased mitochondrial membrane potential is an attractive explanation for the complex dysfunctions of aging. However, it is unclear if lessening of the mitochondria voltage potential is a cause or a consequence of cellular aging,” said researchers in their study, which was published in Nature Aging on December 30.

To achieve the elusive goal of verifying causality, the researchers used optogenetics, a technology that uses light to precisely manipulate a biological process inside a cell. Using a light-activated proton pump, they were able to specifically increase the mitochondrial membrane potential in the cells of adult roundworms. This instrument was dubbed "mitochondria-ON."

Most Popular

Reversing aging

The scientists' three different strains of roundworms experienced several age-associated indicators of aging reversed by the optogenetics method, which also reproducibly increased the treated worms' lifetime compared to untreated worms.

“We were able to show that harnessing the energy of light to experimentally increase mitochondrial membrane during adulthood is alone sufficient to slow the rate of aging,” reported researchers.

According to the researchers, these findings tend to indicate that it may be possible to directly reverse the age-related reduction of a mitochondrial voltage potential to prevent the roundworms' physiologic decline.

Study abstract:

Mitochondrial dysfunction plays a central role in aging, but the exact biological causes are still being determined. Here, we show that optogenetically increasing mitochondrial membrane potential during adulthood using a light-activated proton pump improves age-associated phenotypes and extends the lifespan in Caenorhabditis elegans. Our findings provide direct causal evidence that rescuing the age-related decline in mitochondrial membrane potential is sufficient to slow the rate of aging and extend health span and lifespan.