Surprise! The "closest black hole" is actually just "stellar vampirism"
/img/iea/y5wW5vW5GX/black-hole-stellar-vampirism.jpg)
When Astronomers at the European Southern Observatory came across a massive energy source a mere 1,000 light-years away, their finding surged through the scientific community.
It looked like we'd discovered the closest black hole ever. We might be able to peer into the dark abyss with only a 1,000-year lag.
But that incredible discovery also came with some skepticism. When it comes to science that holds the potential to reshape our view of the universe, the utmost scrutiny is required.
"Not only is it normal, but it should be that results are scrutinized," explains Thomas Rivinius, a Chile-based astronomer with the ESO.
That scrutinizing second look is how a pair of researchers came to propose an explanation that breaks with that initial black hole idea.
The HR 6819 system where the alleged black hole was located might have no black hole at all.
Scientists thought that a swirling volume of matter was circling down the drain of a black hole, but this could simply be "stripped" matter from a star that lost a major portion of its mass to another star. This 180-degree finding is explained in a study published Wednesday in the journal Astronomy and Astrophysics.
The corrective study might help explain two wonders of the universe: gravitational waves and supernova explosions.
Astronomers join forces to discover "stellar vampirism" where a black hole was thought to lurk
"We had reached the limit of the existing data, so we had to turn to a different observational strategy to decide between the two scenarios proposed by the two teams," says Abigail Frost, a researcher at KU Leuven who led the new study.
To unlock the secrets of this perplexing system, both science teams — the one from the initial, black hole extravaganza, and the later one with an alternative theory in mind — collaborated to develop new, more high-definition data of HR 6819.
This was accomplished with the ESO's Very Large Telescope, in addition to the Very Large Telescope Interferometer (VLTI), both located in Chile.
"The VLTI was the only facility that would give us the decisive data we needed to distinguish between the two explanations," said an author of both the new study, and the initial black hole-positing study on HR 6819.
This teamwork was essential in the struggle to unlock the true nature of the HR 6819 system.
"The scenarios we were looking for were rather clear, very different, and easily distinguishable with the right instrument," says Rivinius. "We agreed that there were two sources of light in the system, so the question was whether they orbit each other closely, as in the stripped-star scenario, or are far apart from each other, as in the black hole scenario."
Employing a dual-strategy, the intrepid collective of astronomers leveraged both the Multi-Unit Spectroscopic Explorer (MUSE) instrument (which is on the ESO's VLT) and the VLTI's GRAVITY instrument.
MUSE enabled the astronomers to establish that there was no bright companion in a wider orbit, but the high spatial resolution of GRAVITY resolved "two bright sources separated by only one-third of the distance between the Earth and the sun," explained Frost.
One mistaken black hole observation could help unlock cosmic mysteries
"These data proved to be the final piece of the puzzle, and allowed us to conclude that HR 6819 is a binary system with no black hole," added Frost. The mega-team of astronomers then made a calculated guess at the moment they'd captured with the telescopic instruments, and suspect that they caught the system in the moment "shortly after one of the stars had sucked the atmosphere off its companion star," says Julia Bodensteiner, an ESO fellow in Germany, who's also an author of the new study.
"This is a common phenomenon in close binary systems, sometimes referred to as 'stellar vampirism' in the press," adds Bodensteiner. When the "donor" star was being stripped of some of its material — the recipient star started to pirouette, faster and faster.
In other words, the superteam of astronomers caught the pair of interlocked stars in a very rare moment — one that's "extremely difficult" to capture, explains Frost.
"This makes our findings for HR 6819 very exciting, as it presents a perfect candidate to study how this vampirism affects the evolution of massive stars," which could help unlock the mysteries of both gravitational waves, and supernova explosions.
It's rare for a mistake to lead to a new discovery, and even rarer still for a mistake to be followed-up by something that could fundamentally transform our grasp of the entire universe. But that's what happened.
Study Abstract:
Astrophysicists are looking for biosignatures, such as methane, and technosignatures, such as radio signals, in their search for extraterrestrial life.